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1. Introduction

The "Osirris Al irrigation model" is a pivotal element within the comprehensive Osirris Irrigation System,
offering precise and dependable predictions of soil moisture. This model empowers informed
decision-making by farmers, trained using data collected during the data collection phase and external
agricultural data. Following its integration into the Osirris Irrigation System, it will undergo real-world
testing.

The irrigation model forecasts near-future soil moisture content, facilitating proactive water
management. It goes beyond simple moisture prediction, incorporating advanced features like projecting
days until critical dryness for a specific crop. Additionally, it estimates necessary water quantities to
maintain optimal soil moisture levels.
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Figure 1: The graph illustrates soil water tension changes over time for an apple tree in Sbeitla (Sandy
soil). The upward trend and daily fluctuations signify soil drying, while irrigation events are shown by
downward "slopes," replenishing soil moisture. Gradient(s) represent the change in soil moisture
tension, coupled with precipitation (in the legend mentioned as “Rain”), assumptions can be made on
when there was an irrigation period.

The model's capacity to estimate water needs enhances its utility. By accounting for weather,
evapotranspiration, and soil attributes, it guides precise irrigation amounts. This optimizes water
management, encourages sustainable agriculture, and curbs wastage.

Our Al model development follows an Agile approach, releasing iterative versions to enhance predictive
capabilities. Each iteration integrates additional data sources. Validation and analysis inform adjustments
for improved accuracy, robustness, and generalization.



2. Data Collection

The initial prototype models were trained using data collected from an on-site weather station, which
measured a range of meteorological attributes such as:

Précipitations derniere heure(mm)
Précipitations dernieres 24 h(mm)
Précipitations de la semaine(mm)
Précipitations du mois(mm)
Précipitations totales(mm)
Lumiére(lux)

Température extérieure(°C)
Humidité extérieure(%)
Pression absolue(hpa)
Vitesse du vent(km/h)
Direction du vent

Facteur vent(°C)

The weather station used saves measurement results to a CSV file. These measurements can be
manually downloaded from the SD card. However, due to the iterative model training process, we
needed a solution to access the most recent weather data.

While this approach provided localized data, we recognized the need for a more versatile and
comprehensive solution. Consequently, we shifted to utilizing the weather-meteo.com API, a valuable
resource that allows us to input geographical coordinates and retrieve a wealth of historical weather
data and also forecasts according to different weather forecast models. Forecasts will help the model
produce more reliable results, because it can also leverage sophisticated meteorological predictions into
account.

The weather-meteo.com APl encompasses an extensive array of data points, including:

e Temperature (2 m) e Cloudcover (Total, Low, Mid, High)
e Relative Humidity (2 m) e Visibility

e Dewpoint (2 m) e Evapotranspiration

® Apparent Temperature e Reference Evapotranspiration (ETo)
e Precipitation Probability e Vapor Pressure Deficit

® Precipitation (rain + showers + snow) e Wind Speed (10 m)

e Rain e Wind Speed (80, 120, 180 m)

e Showers e Wind Direction (10, 80, 120, 180 m)
e Snowfall e Wind Gusts (10 m)

e Snow Depth e Temperature (80, 120, 180 m)

e \Weathercode e Soil Temperature (0, 6, 18, 54 cm)

e Sealevel Pressure e Soil Moisture (0-1, 1-3, 3-9, 9-27, 27-81
e Surface Pressure cm)

By incorporating this wide-ranging data, our Al model gains a more holistic understanding of
environmental conditions that impact soil moisture. To ensure our Al model remains efficient and avoids
overfitting, we strategically selected a subset of these features for training:

® Temperature e Cloudcover
e Humidity e Shortwave_Radiation
® Precipitation (rain + showers + snow) e Windspeed



e Winddirection ® Soil_moisture_0-7
® Soil_temperature_7-28 e FEtO_evapotranspiration

This thoughtfully curated feature set strikes a balance between predictive accuracy and model
complexity.

The data from the API is returned in a JSON formatted response, this is being saved in a data frame.
Afterwards the dates are converted to datetimeindex in ISO format, set as index and

Python

import subprocess
import json
fromdatetime import date

# Example data

lattitude, longitude =35.222866, 9.090245
start_date, end_date = '2022-12-68', '2023-07-04"'
today = date.today()

def get_historical_weather apl(lattltude longitude, start_date, end_date):
dct subprocess.check_output(['curl’
f'https://archive-api.open-meteo. com/v1/era57lat1tude {lattitude}&longitude={longitude}&start_date= {st
art_date}&end_date={today.strftime("%Y-%m-%d") }&hourly=temperature_2m, relativehumidity_2m, rain, cloudco
ver, shortwave_radiation,windspeed_10m,winddirection_10m, soil_temperature_7_to_28cm,soil_moisture_0_to_
7cm, et@_fao_evapotranspiration']).decode()

dct = json.loads(dct)

# I also convert it to a pandas dataframe

data= (pd.DataFrame([dct[ 'hourly']['temperature_2m'],
dct["hourly']['relativehumidity_2m'],
dct['hourly']['rain'],
dct[ 'hourly']['cloudcover'],
det['hourly']['shortwave_radiation'],
dct[ "hourly']['windspeed_106m'],
dct['hourly']['winddirection_1@m'],
dct[ 'hourly']['soil_temperature_7_to_28cm'],
det['hourly']['soil_moisture_@_to_7cm'],
dct[ 'hourly']['et@_fao_evapotranspiration'],
dct['hourly']['time"]],
index = [ 'Temperature', '"Humidity', 'Rain', 'Cloudcover', 'Shortwave_Radiation', 'Windspeed',
'Winddirection', 'Soil_temperature_7-28"', 'Soil_moisture_0-7', 'Et@_evapotranspiration', 'date'])
T
.assign(date = lambda x : pd.to_datetime(x.date, format="%Y-%m-%dT%H:%M"))
.set_index(['date']).dropna())

returndata

data_weather_api=get_historical_weather_api(lattitude, longitude, start_date, end_date)

An important factor in accurate soil moisture predictions is accounting for soil type variability. To address
this, we calculated volumetric soil water content using the Van Genuchten approach. We have also
integrated predefined soil water retention curves corresponding to major soil types. Moreover,
recognizing the diversity of soil compositions across agricultural fields, we offer farmers the flexibility to
input their custom soil water retention curve. This adaptation ensures that the Al model's predictions
align closely with the unique characteristics of the cultivated soil.



3. Data Preparation

The heart of the Osirris Al irrigation model lies in its ability to process diverse and dynamic datasets from
various environmental conditions, soil types, weather data, and crop variations. To ensure its versatility
and reliability, the data preparation pipeline has been meticulously designed and tested.

The project is written in python programming language. For easy access and collaboration, we have
created a GitHub repository where you can find the code using the following link:

GitHub repository

This section outlines the comprehensive process that transforms raw data into a structured and
informative format for accurate predictions. This process includes the following steps:

1) Interpolation and Outlier Handling:

Upon retrieval of sensor data through the Wazigates API, an initial step involves linear interpolation. This
method tackles missing data points and mitigates the impact of outliers, thus fostering a more
continuous and coherent dataset.

2) Weather Data Integration:

Weather-related data is fetched from the API, typically available on an hourly basis. To align it with the
desired sampling rate, a linear resampling technique is applied. This ensures synchronization between
sensor and weather data timestamps, crucial for meaningful correlation.

3) Timestamp-Based Merging:

Merging the two dataframes is a pivotal step, requiring accurate alignment of timestamps. This
integrated dataset forms the foundation for subsequent analysis and modeling.

4) Temporal Alignment:

To prevent spurious learning from non-existent data, the integrated dataframe is trimmed to match the
shortest time series duration, fostering uniformity and accuracy in predictions.

5) Evaluation Metric and Data Quality:

A prior evaluation methodology computed deviation from ground truth data, evaluating preprocessing
steps including interpolation and imputation methods using diverse metrics. This quality assurance step
ensures robust and reliable data.

6) Data Type Standardization:

Aligning data types is critical for consistent analysis. For instance, recalculating wind directions into
degrees ensures uniformity across features.

7) Feature Engineering:

The model's performance is augmented by engineered features. Grouped soil metrics, rolling means, and
temporal indicators like hour, minute, date, and month provide contextual information to the model,
enhancing its predictive capability.

8) Soil Water Content Calculation:


https://github.com/Waziup/Osirris_irrigation

Volumetric water content (VWC) is pivotal in soil moisture predictions. The calculation depends on the
soil type, and predefined soil water retention curves are provided. Farmers can contribute by inputting
custom curves, refining predictions for their specific conditions.

9) Feature Normalization:

Normalization harmonizes feature ranges, a crucial step for Al models. The linear max-min normalization
method is employed, ensuring equal importance for features regardless of their value range.

10) Gradient Calculation and Pump State:

Detecting rapid soil tension declines indicates precipitation or irrigation. The gradient feature signifies
this change. The pump state, denoting irrigation periods, is integrated, enhancing prediction accuracy.

11) Cleaning and Cutting:

Data cleanliness is paramount. The data frame is refined by renaming columns, eliminating missing
values, and aligning with rolling mean window sizes, thereby optimizing input quality.

12) Training Data Preparation:

To facilitate training, the data frame is segmented into separate subsets, each encompassing periods
between irrigation events. This strategic partitioning enhances model learning and predictive accuracy.

By embracing this comprehensive data preparation pipeline, the Osirris Al irrigation model not only
accommodates a multitude of scenarios, but also ensures the robustness and generalization required for
reliable predictions across diverse environmental settings, soil conditions, and crop types.



4. Model Training

The journey of training and refining the Osirris Al irrigation model is characterized by meticulous steps,
each contributing to the model's accuracy and reliability within the specified irrigation time frame. By
delving into the intricacies of each phase, the following elucidation sheds light on the iterative process
that transforms raw data into informed predictions.

1) Initial Setup: Data Split and Feature Pruning

At the outset, the already segmented dataframe is split into separate training and testing sets. To
streamline the model's learning process, redundant or unnecessary features like the previously
engineered "gradient" are discarded, refining the input.

2) Model Training and Comparison: Evaluating Regression Models

The exploration continues with a rigorous comparison of various regression models. From this
evaluation, the top-performing models are earmarked for subsequent phases. This preliminary selection
lays the foundation for an optimized model. In the following there is a list of the models that are being
compared:

Linear Regression

Extra Trees Regressor
Random Forest Regressor
Gradient Boosting Regressor
Decision Tree Regressor
Light Gradient Boosting Machine
CatBoost Regressor

Extreme Gradient Boosting
AdaBoost Regressor

Ridge Regression

Bayesian Ridge

Huber Regressor

Elastic Net

K Neighbors Regressor

Lasso Regression

Lasso Least Angle Regression

We also evaluated other models, but due to bad performance metrics we omitted them and did not
waste resources on training them. In the following there is a list of the models that are not used:

Least Angle Regression
Dummy Regressor
Orthogonal Matching Pursuit
Passive Aggressive Regressor

In the development of the Osirris Al irrigation model, thorough model comparison and testing have
emerged as critical steps. The rationale behind this lies in the fact that different models perform
differently across various datasets and time periods. Each dataset carries its unique characteristics,
which can significantly influence a model's effectiveness.

To validate this, we conducted testing across five distinct time periods, representing diverse
environmental conditions and crop growth stages. This extensive evaluation served as a benchmark to



assess model performance. Models consistently displaying poor performance across all test periods were
deliberately excluded from further consideration.

The core message here is the acknowledgment that no single model universally excels in all scenarios.
Variability in soil conditions, weather patterns, and crop attributes demands a comprehensive
exploration of multiple modeling approaches. By systematically comparing models across diverse
datasets and temporal contexts, we not only identify the best-suited candidates but also gain insights
into the strengths and limitations of each model.

In summary, this iterative process of model comparison and testing underscores the need for
adaptability and versatility in Al systems. It ensures that the final Osirris Al irrigation model not only
performs well on training data but also exhibits robust adaptability to the dynamic challenges posed by
varying environmental conditions, soil compositions, and crop characteristics.

3) Hyperparameter Tuning: Precision Enhancement through Parameter Optimization

Hyperparameter tuning follows, a critical step where model parameters are adjusted. This fine-tuning
can occur automatically or guided by a predetermined parameter grid. By conducting both methods and
comparing the outcomes, any improvements are meticulously tracked.

4) Ensemble Model Creation: Augmenting Predictive Power

A pivotal step encompasses the creation of ensemble models, to further increase the quality of
predictions. This is done in various ways:

e Blended Models and Timespan Comparison: These blended models are generated from the
same and different timespans, necessitating data alignment through precise model cutting. The
ensuing evaluation gauges the performance of these ensemble models, identifying optimal
combinations.

e Model Stacking: Combining Predictive Abilities: Further advancing ensemble strategies, model
stacking is deployed. The performance of these stacked models is scrutinized, leading to the
selection of the most proficient option. This approach augments the model's predictive prowess
through careful combinations.

5) Evaluation on Unseen Data: Robustness Assessment

Evaluating the model's reliability on unseen data is pivotal. Fresh time spans are extracted from the
"ground truth" dataset, uninvolved in the training or testing sets. Comparing these time spans against
the model's predictions furnishes insights into performance, ensuring the model's robustness.

6) Data Enrichment for Enhanced Predictions: Integration of Forecasted Data

To enhance prediction accuracy, known or forecasted data is injected into the model. Weather forecast
data from the www.open-meteo.com APl becomes a cornerstone. Timestamps are converted into
time-related data columns, while Volumetric Water Content (VWC) and soil temperature are acquired
from the forecast data, replacing previously sensor-derived calculations. The predictive influence of the
pump state feature is also set to zero to estimate potential soil dryness.

7) Validation and Metrics Computation: Gaining Insights into Performance:

To validate the model's refined predictions, a meticulous comparison is established between the "ground
truth" sensor data and the model's projections. A spectrum of metrics, including Mean Absolute Error
(MAE), Mean Squared Error (MSE), Mean Percentage Error (MPE), and R-squared Score (R2-Score), are
calculated. These metrics serve as compasses, directing the assessment of the model's proficiency in
forecasting independent data.



Embarking on this intricate process, the Osirris Al irrigation model evolves through stages of assessment,
comparison, and refinement. The amalgamation of careful evaluation, predictive enrichment, and
meticulous model comparisons culminate in an Al system that not only thrives on training data but also
demonstrates robust adaptability to unforeseen environmental dynamics, soil conditions, and crop

characteristics.



5. Soil Water Tension Forecasting

5.1. Visual Analysis

The visualization process commences by rendering the best performing models through a series of

insightful plots. Each plot serves as a visual snapshot of the model's predictions against the actual
"ground truth" data.
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Figure: 5 day forecast for Soil tension values on unseen data

This visual juxtaposition provides an immediate understanding of the model's accuracy across diverse

scenarios.
e Spotting Potential Problems: Addressing Outliers and Anomalies
e Diverse Scenarios: Comprehensive Insights into Model Behavior
[ ]

Fine-Tuning through Visual Insight: In instances where problematic areas emerge, visual
validation acts as a stepping stone for iterative improvement. These insights guide the
refinement process, empowering data scientists to fine-tune the models further, potentially
mitigating anomalies and outliers.

In the journey of the Osirris Al irrigation model from raw data to predictive capability, visual validation
stands as a crucial checkpoint. This phase presents the model's intricate dynamics in a comprehensible
format. It serves a dual purpose: ensuring the model's reliability and bridging the gap between data
science intricacies and practical decision-making.



5.2. Validation on Unseen Test Dataset

When assessing the performance of our models, it's crucial to focus on metrics generated from unseen
data rather than metrics produced during training. To achieve this, we adopt a two-step validation
process.

Validation Set: During training, we set aside the most recent part of the data frame, ensuring it is not
used for training or even as a validation set. This reserved portion becomes our test set. The validation
set, comprising the remaining data, serves as the basis for cross-validation during model training.

Test Set Evaluation: After training, we rigorously evaluate our model's performance on the test set,
which it has never encountered before. This step is paramount in selecting the best-performing model
for the task. It guards against the risk of overfitting, where models excel in training data but perform
poorly on new, unseen data.

Model Refinement: The top-performing model is further refined by retraining it individually,
incorporating the previously withheld test set. This ensures the model has the most up-to-date data
points for optimal accuracy.

Performance Metrics

For our Subaytilah test site in Tunisia, we obtained the following performance metrics for a 5-day
forecast horizon using unseen data:

Metric Result
MAE 0.23
RMSE 0.35
MPE 12.52 %
R2 0.73

In the field of statistics, the Mean Percentage Error (MPE) represents the calculated average of
percentage errors, indicating how forecasts made by a model deviate from the actual values of the
forecasted quantity. These metrics offer a promising outlook, particularly in the context of agricultural
applications, where a 12.5% MPE signifies a reliable forecasting performance.



5.3. Predicting Optimal Irrigation Timing

The final stride of the Osirris Al irrigation model's journey brings its culmination in empowering farmers
with actionable insights—specifically, predicting the optimal timing for irrigation. This pivotal step serves
as the bridge between sophisticated machine learning and real-world agricultural practices, enabling
farmers to make informed decisions aligned with their crops' needs.

Predictive Guidance for Optimal Irrigation

Harnessing the predictive prowess of the model, the system computes and projects when the
pre-established soil tension threshold will be reached. This projection, grounded in data-driven insights,
offers farmers a tangible timeframe within which their plants will require irrigation. By predicting the
impending soil tension threshold crossing, the model provides an invaluable cue to initiate irrigation
practices.

Precision and Customization: Adapting to Individual Needs

Recognizing the diversity in soil types, crop characteristics, and local conditions, the predictive guidance
takes into account the specific settings of each agricultural plot. The Osirris Al irrigation model's
adaptability ensures that the forecasted irrigation timing is tailored to individual needs, enhancing its
precision and practicality.

Enabling Proactive Decision-Making

The predictive irrigation timing empowers farmers to proactively plan their irrigation routines. This
proactive approach not only ensures that plants receive the right amount of water at the right time but
also optimizes water resource management. By aligning irrigation practices with plants' actual needs,
water wastage is minimized, and crop health is maximized.

Holistic Integration into Agricultural Practices

The predictive guidance seamlessly integrates into existing agricultural routines, bridging the gap
between cutting-edge technology and traditional farming wisdom. Farmers can now rely on data-backed
predictions to guide their actions, making the irrigation process more efficient, effective, and responsive
to real-time conditions.

A Glimpse into the Future

As the Osirris Al irrigation model evolves, its predictive capabilities are poised to become increasingly
refined and accurate. Through continuous learning and iterative enhancement, the model's ability to
anticipate optimal irrigation timing will only improve, solidifying its role as a trusted companion in
modern agriculture.

In this final step, the Osirris Al irrigation model transcends data algorithms to deliver tangible benefits to
farmers—offering the gift of foresight and the power of timely, informed decision-making.



6. Conclusion

In the realm of modern agriculture, the fusion of technology and cultivation practices has yielded
transformative results. This report has explored the evolution and implementation of the "Osirris Al
irrigation model," a pivotal component within the comprehensive Osirris Irrigation System. As we
conclude this discourse, we recognize the overarching objective: to revolutionize irrigation practices by
harnessing the power of artificial intelligence, offering pragmatic solutions to age-old challenges.

The journey embarked with a vision to usher in a new era of precision agriculture, where water
management goes beyond tradition. The inception of the Osirris Irrigation System unveiled a
transformative paradigm, deploying sensor devices armed with real-time data collection capabilities. This
transition from conventional methodologies to data-driven insights served as the foundation for
informed decision-making, curbing water wastage, and augmenting crop health.

The Osirris Al irrigation model represents a significant innovation achieved through iterative prototyping.
Its primary function is predicting soil moisture content, leveraging a combination of meteorological data.
This predictive capability empowers farmers by providing valuable insights for precise and timely
irrigation. In a world where sustainability is a pressing concern, this predictive power aids in optimizing
resource usage, a significant step towards resource-efficient agriculture.

The model's architecture is designed with meticulous attention to detail. It incorporates diverse sensor
data, weather forecasts, and soil attributes, making it adaptable to various environmental conditions. By
utilizing machine learning techniques, the model handles complexity effectively, capturing the nuances
of irrigation dynamics with high accuracy.

A cornerstone of the Osirris Al irrigation model's evolution was its inherent modularity. The flexibility to
accommodate different hardware setups, sensor types, and crop specifications is a testament to its
versatility. Furthermore, the system's capacity to integrate seamlessly with the cloud infrastructure and
remote access amplifies its practicality.

As the Osirris Al irrigation model journeys forward, continual refinements and enhancements remain a
paramount endeavor. The emphasis on predictive precision, data-driven optimization, and real-world
applicability sets the stage for ongoing innovation. The integration of predictive irrigation timing bestows
farmers with the invaluable ability to make well-informed decisions, underpinned by advanced
technological insights.

In closing, the Osirris Al irrigation model serves as a testament to the remarkable symbiosis between
technology and agriculture. This report has illuminated its evolution, from conception to realization,
encapsulating its intricate components, methodologies, and aspirations. As the agricultural landscape
continues to evolve, the Osirris Al irrigation model stands as a beacon of progress, a harmonious blend
of innovation and tradition, poised to redefine the contours of modern farming.



